Abstract

AbstractThe creative design of kinematic structures with excellent performance remains an open issue in the quest for developing novel multi-loop mechanisms. This study presents an automatic method to synthesize all nonisomorphic planar multi-loop mechanisms satisfying the required connectivity between the base and the end-effector. First, based on the connectivity matrix calculation, all multi-loop mechanisms are generated from synthesized kinematic chains. Second, the concepts of perimeter, canonical, and characteristic graphs of multi-color topological graphs are addressed to acquire the simplified characteristic hybrid code (SCHC) in order to eliminate isomorphic multi-loop mechanisms. Then, an automatic method to synthesize all nonisomorphic planar multi-loop mechanisms with the required connectivity between the base and the end-effector is provided. Finally, a practical application of this synthesis method is illustrated by taking the mechanical arm of a face-shovel hydraulic excavator as an example to demonstrate the effectiveness of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.