Abstract
Considering systems of separations in a graph that separate every pair of a given set of vertex sets that are themselves not separated by these separations, we determine conditions under which such a separation system contains a nested subsystem that still separates those sets and is invariant under the automorphisms of the graph. As an application, we show that the $k$-blocks -- the maximal vertex sets that cannot be separated by at most $k$ vertices -- of a graph $G$ live in distinct parts of a suitable tree-decomposition of $G$ of adhesion at most $k$, whose decomposition tree is invariant under the automorphisms of $G$. This extends recent work of Dunwoody and Kr\"on and, like theirs, generalizes a similar theorem of Tutte for $k=2$. Under mild additional assumptions, which are necessary, our decompositions can be combined into one overall tree-decomposition that distinguishes, for all $k$ simultaneously, all the $k$-blocks of a finite graph.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.