Abstract

A closed curve in the Freudenthal compactification |G| of an infinite locally finite graph G is called a Hamiltonian curve if it meets every vertex of G exactly once (and hence it meets every end at least once). We prove that |G| has a Hamiltonian curve if and only if every finite vertex set of G is contained in a cycle of G. We apply this to extend a number of results and conjectures on finite graphs to Hamiltonian curves in infinite locally finite graphs. For example, Barnette’s conjecture (that every finite planar cubic 3-connected bipartite graph is Hamiltonian) is equivalent to the statement that every one-ended planar cubic 3-connected bipartite graph has a Hamiltonian curve. It is also equivalent to the statement that every planar cubic 3-connected bipartite graph with a nowhere-zero 3-flow (with no restriction on the number of ends) has a Hamiltonian curve. However, there are 7-ended planar cubic 3-connected bipartite graphs that do not have a Hamiltonian curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.