Abstract
Abstract.One of the basic theorems in universal algebra is Birkhoff's variety theorem: the smallest equationally axiomatizable class containing a class K of algebras coincides with the class obtained by taking homomorphic images of subalgebras of direct products of elements of K. G. Grätzer asked whether the variety theorem is equivalent to the Axiom of Choice. In 1980, two of the present authors proved that Birkhoff's theorem can already be derived in ZF. Surprisingly, the Axiom of Foundation plays a crucial role here: we show that Birkhoff's theorem cannot be derived in ZF + AC \{Foundation}, even if we add Foundation for Finite Sets. We also prove that the variety theorem is equivalent to a purely set-theoretical statement, the Collection Principle. This principle is independent of ZF\{Foundation}. The second part of the paper deals with further connections between axioms of ZF-set theory and theorems of universal algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.