Abstract

Bacterial production of a plasmid-encoded bacteriophage P22 tailspike protein shows different yield and impact on cell viability in RecA+ LexA+, RecA- LexA+ and RecA+ LexA1(Ind-) backgrounds. In a LexA1(Ind-) context, we have observed lesser toxicity and higher productivity than in the wild-type strain, in which the bacterial growth was inhibited after induction of recombinant gene expression. Also, a negative effect of the incubation temperature on the growth of producing cells was also detected. By exploring the molecular basis of these inhibitory events, we found a connection between the dosage of the recombinant gene and the proteolytic stability of the encoded protein. Under both genetic and environmental conditions favoring higher plasmid copy number and consequently increasing the synthesis rate of the recombinant protein, enhanced protein degradation was observed in parallel with an important growth inhibition. Altogether, the obtained data suggest the existence of a critical concentration of recombinant protein over which cell proteolysis is stimulated at rates not compatible with optimal physiological conditions for bacterial growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.