Abstract
The Algarve is located a few hundred kilometres north of the crossing of the E–W Eurasia–Africa plate boundary and is characterised by a moderate seismicity, with some important historical and instrumental earthquakes causing loss of lives and significant material damages. The area is affected not only by plate boundary generated earthquakes but also by local events capable of generating moderate to large earthquakes. The assessment of onshore local sources and its connections with the plate border is therefore of vital importance for an evaluation of the regional seismic hazard. This paper discusses the application of geophysical data to study a large fault zone which is the offshore prolonging of the Carcavai fault zone (CF), an onshore outcropping structure more than 20km long which is seen to deform sediments of Plio-Quaternary age. Offshore and onshore aeromagnetic data, offshore gravimetric and seismic reflection data shows the existence of a long (over 200km) WSW–ENE trending fault zone affecting the Palaeozoic basement with a normal geometry which is probably segmented by NNW–SSE to N–S faults. Seismic data shows that this fault zone has been reactivated as a left-lateral strike-slip fault and inverted in the Cenozoic with the upthrust of the northwestern block, in agreement with the onshore CF characteristics. Recent work carried out onshore and offshore near the coastline that shows deformation of Plio-Quaternary sediments suggests that this is an active fault. Some of the faults segments have instrumental seismicity associated. Though faults very rarely rupture along its entire length, several fault segments have a length of about 30km and may produce an earthquake of magnitude about7. The proximity of the onshore segment to the city of Faro and of the offshore segments to the main population centres of the Algarve makes it a serious threat to the Algarve.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have