Abstract

A quantitative theoretical model connecting the thermopower and electronic entropy of molten systems is proposed, the validity of which is tested for semiconductors and metallic materials. The model accurately provides the entropy of mixing for molten semiconductors, as shown for the representative system Te–Tl. Predictions of the electronic entropy of fusion for compounds are in agreement with available data and offer a novel means to identify the correct electrical conductivity model when Hall measurements are not available. Electronic entropy for molten semiconductor and metallic systems is shown to reflect order in the molten and solid state. The model proves accurate at predicting the electronic state entropy contribution to the electronic entropy of mixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.