Abstract

Robust methods to tune the unique electronic properties of graphene by chemical modification are in great demand due to the potential of the two dimensional material to impact a range of device applications. Here we show that carbon and nitrogen core-level resonant X-ray spectroscopy is a sensitive probe of chemical bonding and electronic structure of chemical dopants introduced in single-sheet graphene films. In conjunction with density functional theory based calculations, we are able to obtain a detailed picture of bond types and electronic structure in graphene doped with nitrogen at the sub-percent level. We show that different N-bond types, including graphitic, pyridinic, and nitrilic, can exist in a single, dilutely N-doped graphene sheet. We show that these various bond types have profoundly different effects on the carrier concentration, indicating that control over the dopant bond type is a crucial requirement in advancing graphene electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.