Abstract
Four sets of experiments were conducted to examine the influence of conjugated linoleic acid (CLA) isomers during proliferation and differentiation of cultures of 3T3-L1 preadipocytes using physiological culturing conditions. Cultures treated with either albumin [bovine serum albumin (BSA) vehicle] or linoleic acid (LA) served as controls. For the proliferation study (Expt.1), cells were cultured in media containing a crude mixture of CLA isomers or pure LA at 0, 10, 50, or 200 microM for 4 d. Preadipocyte proliferation (cell number, 3H-thymidine incorporation into DNA) decreased as the level of CLA increased in the cultures. In contrast, LA had no impact on DNA synthesis. In Experiment 2a, postconfluent cultures were grown in media containing a crude mixture of CLA isomers or LA at 0, 10, 50, or 200 microM for the next 6 d. Postconfluent cultures supplemented with 50-200 microM CLA had less triglyceride (TG) and were smaller in size than cultures supplemented with similar amounts of LA. In Experiment 2b, postconfluent cultures supplemented with 200 microM of a crude mixture of CLA isomers or LA were harvested on days 1, 3, 6, or 9. Differences in TG content of cultures supplemented with 200 microM CLA compared to control and LA-supplemented cultures became apparent after 3 d of culture. Experiments 3a and 3b examined whether the fatty acid vehicle (BSA vs. ethanol) or the vitamin E status (+/-0.2 mM alpha-tocopherol) of the cultures altered CLA's impact on preadipocyte TG content. In Experiment 3a, ethanol-treated cultures had more TG than non-ethanol-treated cultures regardless of the fatty acid treatment. In Experiment 3b, cultures treated with 100 microM of either a crude mixture of CLA or the trans-10,cis-12 CLA isomer without supplemental vitamin E for 6 d had less TG than CLA-treated cultures containing vitamin E. In Experiment 4, postconfluent cultures were grown in media containing 100 microM LA or either a crude mixture of CLA isomers or the trans-10,cis-12 CLA isomer for 24-96 h to assess CLA's influence on the cell cycle and indices of apoptosis. Cultures treated with 100 microM CLA for 24-96 h had more apoptotic cells than BSA- or LA-treated cultures. Furthermore, cultures treated for 48 h with CLA had fewer cells in the S-phase than control cultures. The effects of the trans-10,cis-12 CLA isomer were more pronounced than those of the crude mixture of CLA isomers. These data suggest that CLA may exert its antiobesity effects by inhibiting proliferation, attenuating TG content, and/or inducing apoptosis in (pre)adipocytes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have