Abstract
Oral delivery, the most common method of therapeutic administration, has two significant obstacles: drug solubility and permeability. The challenges of current oral medicine delivery are being tackled through an emerging method that uses structures called polymeric micelles. In the present study, polymeric micelles were developed using conjugates of linoleic acid-carboxymethyl chitosan (LA-CMCS) for the oral delivery of paclitaxel (PCL). The developed micelles were evaluated by particle size, zeta potential, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). When PCL was contained within micelles, its solubility increased by almost 13.65 times (around 60 µg/mL). The micelles' zeta potentials were -29 mV, their polydispersity indices were 0.023, and their particle diameters were 93 nm. Micelles showed PCL loading and entrapment efficiencies of 67% and 61%, respectively. The sustained release qualities of the PCL release data from micelles were good. In comparison to the pure PCL suspension, the permeability of the PCL from micelles was 2.2 times higher. The pharmacokinetic data revealed that PCL with LA-CMCS micelles had a relative bioavailability of 239.17%, which was much greater than the PCL in the suspension. The oral bioavailability of PCL was effectively increased by LA-CMCS micelles according to an in vivo study on animals. The polymer choice, maybe through improved permeability, plays an essential role when assessing oral bioavailability enhancement and solubility improvement (13.65 times). The outcomes demonstrated that PCL's solubility and pharmacokinetics were improved in the micelles of the LA-CMCS conjugate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have