Abstract

Abstract Consider a natural exponential family parameterized by θ. It is well known that the standard conjugate prior on θ is characterized by a condition of posterior linearity for the expectation of the model mean parameter μ. Often, however, this family is not parameterized in terms of θ but rather in terms of a more usual parameter, such at the mean μ. The main question we address is: Under what conditions does a standard conjugate prior on μ induce a linear posterior expectation on μ itself? We prove that essentially this happens iff the exponential family has quadratic variance function. A consequence of this result is that the standard conjugate on μ coincides with the prior on μ induced by the standard conjugate on θ iff the variance function is quadratic. The rest of the article covers more specific issues related to conjugate priors for exponential families. In particular, we analyze the monotonicity of the expected posterior variance for μ with respect to the sample size and the hyperparameter ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.