Abstract

This paper deals with the Bayesian analysis of finite mixture models with a fixed number of component distributions from natural exponential families with quadratic variance function (NEF-QVF). A unified Bayesian framework addressing the two main difficulties in this context is presented, i.e., the prior distribution choice and the parameter unidentifiability problem. In order to deal with the first issue, conjugate prior distributions are used. An algorithm to calculate the parameters in the prior distribution to obtain the least informative one into the class of conjugate distributions is developed. Regarding the second issue, a general algorithm to solve the label-switching problem is presented. These techniques are easily applied in practice as it is shown with an illustrative example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.