Abstract

2D transition metal carbide/nitride (MXene) nanomaterials have prospective applications in high-performance microwave absorption (MA). However, the excessively high permittivity, absence of magnetic loss, and susceptible oxidizability of MXene severely hinder the enhancement of its MA properties. Here, we used a facile organic solution–phase thermal decomposition method to prepare dielectric–magnetic MXene@CoNi nanocomposites with heterojunctions, which can effectively prevent the oxidation of MXene. Subsequently, the MXene@CoNi nanocomposites were integrated with magnetic CoNi alloys, MXene microspheres (MXene MPs), and a silicon rubber (SR) matrix to construct multilayered CoNi/MXene@CoNi/MXene MPs/SR composites by casting and curing. Benefiting from the multilayered structure and complementary effects of the dielectric and magnetic components, the multilayered CoNi/MXene@CoNi/MXene MPs/SR composites composed of matching, absorbing, and reflective layers showed a remarkable minimum reflection loss of −53.3 dB and an ultra-broad effective absorption bandwidth up to 11.12 GHz at a thickness of 2.96 mm. These results demonstrated the developed multilayered composites are promising candidates for high-performance MA. Our study provides new insights into the development of ultra-broadband MXene-based absorbent materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.