Abstract

AbstractWhile black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. We analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India and adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large‐scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. The increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call