Abstract
Benzo[a]pyrene-7,8-dione (BPQ) is formed by the activation of benzo[a]pyrene(B[a]P), which is an environmental toxic substance that is easily exposed in daily life, due to P450/epoxide hydrolase, and is a substance that induces DNA deformation by forming adducts with DNA. In this study, to investigate the form of bonding between BPQ and DNA, the structures of adducts between BPQ and 2′-deoxycytidine were examined. To examine BPQ–dC adduct conformation, geometry optimization of a total of 16 structural isomers was performed using the density functional theory method. In the structures of BPQ–dC adducts, for the cis-form, the angle between BPQ and dC is nearly perpendicular; but for the trans-form, the bending angle is small. The trans-form had a larger energy gap between ground state and excited state than the cis-form, and had a smaller HOMO–LUMO gap than the cis-form. Therefore, it was found that the trans-form absorbs stronger light and has higher reactivity than the cis-form. Molecular electrostatic potential was calculated and analyzed. The calculated ESP contour map shows the electrophilic and nucleophilic regions of the molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.