Abstract

We present the GB-OBC model as an approach for implicit-solvent MD simulations of a synthetic macromolecule in water. The model is tested and found to be successful in reproducing the chain dimensions and predicting the free energy of solvation of carboxylic acid vinyl polymers. The influence of stereochemistry and the hydrophobic nature of the polymer was investigated as a function of chain length (20 < N < 600) for poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMA). The dimensionless parameters of the GB-OBC model were parameterized to be applicable to PAA and PMA. Scaling relations for chain dimensions obtained using implicit-solvent MD simulations in this study are in good agreement with those from experiments, theory of solvated chains in good solvents, and all-atom MD simulations in explicit water. Results show that ⟨Rg2⟩/NL2 is greater for the atactic chain as compared to the isotactic chain, for PAA as well as PMA. ⟨Rg2⟩/NL2 values of chains attain constancy in water for N = 200, with the values being greater for PMA. The PMA chain is conformationally more perturbed than the PAA chain, for both isotactic and atactic stereochemistry. The solvation free energy ΔGhyd of PAA and PMA in water is negative for all chain lengths (N = 20-600) and becomes more favorable with an increase in molecular weight. The ΔGhyd values for isotactic and atactic chains are identical at lower values of N but differ slightly for N > 300. Irrespective of the hydrophobic nature of the polymer, the atactic chain is thermodynamically more soluble in water as compared to the isotactic chain. The isotactic chain is less hydrophilic as compared to the atactic chain due to the closer proximity of the COOH groups along the backbone. This implicit solvent method is an effective way to accurately simulate the configurational properties and solvation of synthetic polymers in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call