Abstract

Stable conformations of five-member rings with the prototype cyclopentane are well-known to exist as twist or envelope structures and are of general interest in chemistry. Here, we report on the conformational analysis of the sulfur-containing ring 2-methyltetrahydrothiophene studied by a combination of molecular beam Fourier transform microwave (MB-FTMW) spectroscopy and quantum chemistry. Two twist conformers were observed, whereby highly accurate molecular parameters could be determined. In addition, the (34) S-isotopologue of the most stable conformer was assigned in natural abundances. Geometry optimizations were performed at different levels of theory and the calculated rotational constants were compared with experimental values. Two transition states optimized at the MP2/6-311++G(d,p) level using the Berny algorithm could illustrate the intramolecular conversion between both conformers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.