Abstract
Synthetic lipid A analogues and partial structures were analyzed and compared with natural hexaacyl lipid A from E. coli applying Fourier transform infrared spectroscopy. The investigations comprised (i) the measurement of the β ⇔ α phase transition of the acyl chains via monitoring of the symmetric stretching vibration of the methylene groups, (ii) an estimation of the supramolecular aggregate structures evaluating vibrations from the interface like ester carbonyl and applying theoretical calculations (iii) a determination of the inter- and intramolecular conformations monitoring functional groups from the interface and the diglucosamine backbone (ester carbonyl, phosphate). The phase transition temperature T c was found to be nearly a linear function of the number of acyl chains for most bisphosphoryl compounds indicating comparable packing density, whereas the deviating behaviour of some samples indicated a higher packing density. From the determination of the supramolecular aggregate structures (cubic, H II) of natural hexaacyl lipid A by X-ray small-angle diffraction, the existence of the same aggregate structures also for the synthetic hexaacyl lipid A was deduced from the nearly identical thermotropism of the ester carbonyl band. From this, a good approximation of the supramolecular structures of all synthetic samples was possible on the basis of the theory of Israelachvili. The analysis of the main phosphate band, together with that of the T c data and former colorimetric results, allowed the establishment of a model of the intermolecular conformations of neighbouring lipid A/LPS molecules. The biological relevance of the findings is discussed in terms of the strongly varying biological activity (between high and no activity) of the samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.