Abstract

Thermally activated delayed fluorescence (TADF) molecules with aggregation-induced emission (AIE) properties hold tremendous potential in biomedical sensing/imaging and telecommunications. In this study, a multiscale method combined with thermal vibration correlation function (TVCF) theory is used to investigate the photophysical properties of the novel TADF molecule CNPy-SPAC in toluene and crystal and amorphous states. In the crystal state, an increase in radiative rates and a decrease in nonradiative rates lead to AIE. Additionally, conformational isomerization effects result in significantly different luminescent efficiencies between the two crystal structures. Furthermore, the isomerization effect allows for the coexistence of three configurations in the amorphous state. Among them, the non-TADF quasi-axial (Qa) configuration may facilitate energy transfer to the TADF-characteristic quasi-equal/quasi-equal-H (Qe/Qe-H) configurations, enhancing AIE. Moreover, the Qa configuration enables rapid electron transport, offering the potential for self-doped devices. Our work elucidates a new mechanism for the isomerization effect in AIE-TADF molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call