Abstract

Molecular structures were optimized for the calix[4]arene by ab initio method at the Hartree-Fock level of theory using LANL2DZ and 6-311G basis sets. Conformational equilibrium of four calix[4]arene conformers are reported. The results are compared with experiment, force field, and semiempirical molecular orbital calculations. General trends in relative stabilities of calix[4]arene decrease in following order: cone > partial-cone > 1,2-alternate > 1,3-alternate. The most stable conformer is the cone conformer that is stabilized by an array of four hydrogen bonds and these results agree with the reported experimental observations. All structures were analyzed using theoretical IR, UV-Vis, and 1H NMR spectra attributed to the conformational equilibrium at the Hartree-Fock level of theory using LANL2DZ basis set. Keywords: ab initio calculation, calix[4]arene, conformations, cone

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.