Abstract
The dynamics of conformational isomerization are explored in a methyl-capped dipeptide, N-acetyl-tryptophan methyl amide (NATMA), using infrared-ultraviolet (IR-UV) hole-filling and IR-induced population transfer spectroscopies. IR radiation selectively excites individual NH stretch vibrational fundamentals of single conformations of the molecule in the early portions of a gas-phase expansion, and then this excited population is collisionally recooled into its conformational minima for subsequent conformation-specific detection. Efficient isomerization is induced by the IR excitation that redistributes population between the same conformations that have population in the absence of IR excitation. The quantum yields for transfer of the population into the various conformational minima depend uniquely on which conformation is excited and on which NH stretch vibration is excited within a given conformation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have