Abstract

A solid-state nuclear magnetic resonance (NMR) technique is described for obtaining constraints on the backbone conformation of a protein or peptide that is prepared with uniform (15)N,(13)C labeling of consecutive pairs of amino acids or of longer segments. The technique, called double single-quantum-filtered rotational echo double resonance (DSQ-REDOR), uses frequency-selective REDOR to prepare DSQ coherences involving directly bonded backbone (13)CO and (15)NH sites, to dephase these coherences under longer-range (15)NH-(13)CO dipole-dipole couplings in a conformationally dependent manner, and to convert the remaining DSQ coherences to detectable transverse (13)C-spin polarization. The efficacy of DSQ-REDOR is demonstrated in experiments on two isotopically labeled samples, the helical peptide MB(i + 4)EK and the amyloid-forming peptide Abeta(11-25).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.