Abstract

We designed peptides that formed helix bundle structures upon binding of the metal-ions to His residues to form a stable hydrophobic core, in order to analyze the effects of Ala, Val, Ile, and Leu residues, located in the hydrophobic core, together with His, on the conformational changes in respective peptides designated as HA, HV, HI, and HL, respectively. Circular dichroism measurements showed that HV and HI changed from random coil to helix bundle structures upon Zn2+ binding, similar to that observed for HA, while HL existed in the helix bundle structure even in the absence of Zn2+. Electron spin resonance measurements showed that Cu2+ coordination of HI and HL was quite different from that of HA and HV, indicating that HA and HV fluctuated to a greater extent in the solution, despite that their apparent α-helical contents being similar to those of HI and HL. This was also supported by the results obtained from the analyses of thermal stabilities. The change in the structural fluctuation for each peptide upon Zn2+ binding was evaluated based on binding thermodynamics using isothermal titration calorimetry. The structural flexibility in the metal-ion-bound state was found to be in the order HA > HV > HI, and that in the metal-ion-unbound state was found to be greater for HI than that for HL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.