Abstract

In order to analyze protein structural dynamics, we designed simple model peptides whose structures changed from random-coil to helix-bundle structures by forming stable hydrophobic core in the presence of metal ions. The strategy involved destabilizing a de novo designed three helix-bundle protein by substituting the residues present in its hydrophobic core with histidine and small amino acids. The conformational changes of peptides induced upon binding of Zn2+ to histidine were analyzed using circular dichroism spectroscopy, which revealed peptides, HA and HG, to be good candidates for further analyses. The diffracted X-ray tracking experiments showed that the structural fluctuations of both HA and HG were suppressed upon binding of Zn2+. We succeeded in observing the differences in fluctuations of HA and HG in solution between random-coil like and helix-bundle structures. The metal-binding energies determined using the angular diffusion coefficients were in good agreement with those determined using isothermal titration calorimetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.