Abstract
Conformational changes in the bulk solution and at the air-aqueous interface of human serum albumin (HSA) induced by changes in concentration of sodium perfluorooctanoate (C(7)F(15)COO(-)Na(+)) were studied by difference spectroscopy, zeta-potential data, and axisymmetric drop shape analysis. zeta-potential was used to monitor the formation of the HSA-C(7)F(15)COO(-)Na(+) complex and the surface charge of the complex. The conformational transition of HSA in the bulk solution was followed as a function of denaturant concentration by absorbance measurements at 280 nm. The data were analyzed to obtain values for the Gibbs energies of the transition in water (DeltaG(0)(W)) and in a hydrophobic environment (DeltaG(0)(hc)) pertaining to saturated protein-surfactant complexes. The conformational changes that surfactants induce in HSA molecules alter its absorption behavior at the air-water interface. Dynamic surface measurements were used to evaluate this behavior. At low [C(7)F(15)COO(-)Na(+)], proteins present three adsorption regimes: induction time, monolayer saturation, and interfacial gelation. When surfactant concentration increases and conformational changes in the bulk solution occur, the adsorption regimes disappear. HSA molecules in an intermediate conformational state migrate to the air-water interface and form a unique monolayer. At high [C(7)F(15)COO(-)Na(+)], the adsorption of denatured molecules exhibits a behavior analogous to that of dilute solutions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have