Abstract

Gene V protein (gVp) of the bacteriophages of the Ff family is a non-specific single-stranded DNA (ssDNA) binding protein. gVp binds to viral DNA during phage replication inside host Escherichia coli cells, thereby blocking further replication and signaling the assembly of new phage particles. gVp is a dimer in solution and in crystal form. A structural model of the complex between gVp and ssDNA was obtained via docking the free gVp to structures of short ssDNA segments and via the detection of residues involved in DNA binding in solution. Using solid-state NMR, we characterized structural features of the gVp in complex with full-length viral ssDNA. We show that gVp binds ssDNA with an average distance of 5.5 Å between the amino acid residues of the protein and the phosphate backbone of the DNA. Torsion angle predictions and chemical shift perturbations indicate that there were considerable structural changes throughout the protein upon complexation with ssDNA, with the most significant variations occurring at the ssDNA binding loop and the C-terminus. Our data suggests that the structure of gVp in complex with ssDNA differs significantly from the structure of gVp in the free form, presumably to allow for cooperative binding of dimers to form the filamentous phage particle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call