Abstract

Model membranes composed of various lipid mixtures can segregate into liquid-ordered (Lo) and liquid-disordered (Ld) phases. In this study, lipid vesicles composed of mainly Lo or Ld phases as well as complex lipid systems representing the cytosolic leaflet of the myelin membrane were characterized by fluorescence resonance energy transfer with a donor/acceptor pair that preferentially partitioned into Lo or Ld phases, respectively. The fluidity of the lipid systems containing >30% cholesterol was modulated in the presence of the amphipathic peptide melittin. With all the studied lipid systems, melittin attained an α-helical conformation as determined by CD spectroscopy and attained varying degrees of membrane association and penetration as determined by intrinsic Trp fluorescence. The other protein domain utilized was a putative amphipathic helical peptide derived from the cytosolic C-terminal sequence of proteolipid protein (PLP) which is the most abundant protein in the myelin membrane. The C-terminal PLP peptide transitioned from a random coil to an α-helix in the presence of trifluoroethanol. Upon interacting with each of lipid vesicle system, the PLP peptide also folded into a helix; however, at high concentrations of the peptide with fluid lipid systems, associated helices transmuted into a β-sheet conformer. The membrane-associated aggregation of the cytosolic C-termini could be a mechanism by which the transmembrane PLP multimerizes in the myelin membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call