Abstract

Lipid rafts, the functional microdomains in the cell membrane, are believed to exist as liquid-ordered (Lo) phase domains along with the liquid-disordered (Ld) phase of the bulk of the cell membranes. We have examined the lipid order in model and natural membranes by time-resolved fluorescence of trimethylammonium-1,6-diphenylhexatriene incorporated into the membranes. The lipid phases were discerned by the limiting anisotropy, rotational diffusion rate and distribution of the fluorescence lifetime. In dipalmitoylphosphatidylcholine (DPPC)-cholesterol mixtures the gel phase exhibited higher anisotropy and a two-fold slower rotational diffusion rate of the probe as compared to the Ld phase. On the other hand, the Lo phase exhibited higher limiting anisotropy but a rotational diffusion rate comparable to the Ld phase. The Ld and Lo phases elicited unimodal distribution of lifetimes with distinct mean values and their co-existence in phospholipid-cholesterol mixtures was reflected as a biphasic change in the width of the lifetime distribution. Global analysis of the lifetimes yielded a best fit with two lifetimes which were identical to those observed in single Lo or Ld phases, but their fractional contribution varied with cholesterol concentration. Attributing the shorter and longer lifetime components to the Ld and Lo phases, respectively, the extent of the Lo/Ld phase domains in the membranes was estimated by their fractional contribution to the fluorescence decay. In ternary mixtures of egg PC-gangliosides-cholesterol, the gangliosides induced heterogeneity in the membrane but the Ld phase prevailed. The Lo phase properties were observed only in the presence of cholesterol. Results obtained in the plasma membrane and detergent-resistant membrane fractions (DRMs) isolated from U-87 MG cells revealed that DRMs mainly possess the Lo phase; however, a substantially large proportion of plasma membrane also exists in the Lo phase. Our data show that, besides cholesterol, the membrane proteins play a significant role in the organization of lipid rafts and, furthermore, a considerable amount of heterogeneity is present among the lipid rafts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.