Abstract

The membrane-bound state of the gene 9 minor coat protein of bacteriophage M13 was studied in various membrane-mimicking systems, including organic solvents, detergent micelles, and phospholipid bilayers. For this purpose we determined the conformational and aggregational properties of the chemically synthesized protein by CD, FTIR, and HPSEC. The protein appears to be in a monomeric or small oligomeric alpha-helical state in TFE but adopts a mixture of alpha-helical and random structure after subsequent incorporation into SDS or DOPG. When solubilized by sodium cholate, however, the protein undergoes a transition in time into large aggregates, which contain mainly beta-sheet conformation. The rate of this beta-polymerization process was decreased at lower temperature and higher concentrations of sodium cholate. This aggregation was reversed only upon addition of high concentrations of the strong detergent SDS. By reconstitution of the cholate-solubilized protein into DOPG, it was found that the state of the protein, whether initially alpha-helical monomeric/oligomeric or beta-sheet aggregate, did not change. On the basis of our results, we propose that the principal conformational state of membrane-bound gene 9 protein in vivo is alpha-helical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.