Abstract

The membrane-bound state of the gene 9 minor coat protein of bacteriophage M13 was studied in model membrane systems, which varied in lipid head group and lipid acyl chain composition. By using FTIR spectroscopy and subsequent band analysis a quantitative analysis of the secondary structure of the protein was obtained. The secondary structure of the gene 9 protein predominantly consists of α-helical (67%) and turn (33%) structures. The turn structure is likely to be located C-terminally where it has a function in recognizing the phage DNA during bacteriophage assembly. Attenuated total reflection FTIR spectroscopy was used to determine the orientation of gene 9 protein in the membrane, revealing that the α-helical domain is mainly transmembrane. The conformational and orientational measurements result in two models for the gene 9 protein in the membrane: a single transmembrane helix model and a two-helix model consisting of a 15 amino acid long transmembrane helix and a 10 amino acid long helix oriented parallel to the membrane plane. Potential structural consequences for both models are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.