Abstract

Symmetric division of Gram-negative bacteria depends on the combined action of three proteins that ensure correct positioning of the cell division septum, namely, MinC, MinD, and MinE. To achieve this function, MinC and MinD form a membrane-bound complex that blocks cell division at all potential sites. Opposing this inhibition is MinE, which interacts with MinD via its N-terminal anti-MinCD domain to site-specifically counter the action of the MinCD complex. The anti-MinCD domain has been proposed to bind MinD in a helical conformation; however, little is actually known about the structure of this functionally critical region. To understand how MinE can perform its anti-MinCD function, we have therefore investigated the conformation of the full-length MinE from Neisseria gonorrhoeae by solution NMR. Although solubility considerations required the use of sample conditions that limit the observation of amide resonances to regions that are protected from solvent exchange, backbone chemical shifts from both N- and C-terminal domains could be assigned. In contrast to previous models, secondary chemical shift analysis of these solvent-protected regions shows that parts of the N-terminal anti-MinCD domain are stably folded with many functionally important residues localizing to a beta-structure. In addition, this N-terminal domain may be interacting with the C-terminal topological specificity domain, since mutations made in one domain led to NMR spectral changes in both domains. The nonfunctional MinE mutant L22D showed even larger evidence of structural perturbations in both domains, with significant destabilization of the entire MinE structure. Overall, these results suggest that there is an intimate structural association between the anti-MinCD and topological specificity domains, allowing the functional properties of the two domains to be modulated through this interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.