Abstract
We provide a variety of classes of functions that can be realized as the mean curvature on the boundary of the standard n dimensional ball, n ≥ 3, with respect to some scalar flat metric. Because of the presence of some critical nonlinearity, blow up phenomena occur and existence results are highly nontrivial since one has to overcome topological obstructions. Our approach consists of, on one hand, developing a Morse theoretical approach to this problem through a Morse-type reduction of the associated Euler–Lagrange functional in a neighborhood of its critical points at Infinity and, on the other hand, extending to this problem some topological invariants introduced by A. Bahri in his study of Yamabe type problems on closed manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.