Abstract
Let (Mn, g) be an n—dimensional compact Riemannian manifold with boundary with n > 2. In this paper we study the uniqueness of metrics in the conformai class of the metric g having the same scalar curvature in M, dM, and the same mean curvature on the boundary of M, dM. We prove the equivalence of some uniqueness results replacing the hypothesis on the first Neumann eigenvalue of a linear elliptic problem associated to the problem of conformai deformations of metrics for one about the first Dirichlet eigenvalue of that problem. Keywords: Conformal metrics, scalar curvature, mean curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.