Abstract
Let be a space-like hypersurface without umbilical points in the Lorentz space form . We define the conformal metric and the conformal second fundamental form on the hypersurface, which determines the hypersurface up to conformal transformation of . We calculate the Euler-Lagrange equations of the volume functional of the hypersurface with respect to the conformal metric, whose critical point is called a Willmore hypersurface, and we give a conformal characteristic of the hypersurfaces with constant mean curvature and constant scalar curvature. Finally, we prove that if the hypersurface with constant mean curvature and constant scalar curvature is Willmore, then is a hypersurface in .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.