Abstract

We present a comprehensive study of the effective Conformal Field Theory (CFT) describing the low energy excitations of a gas of spinless interacting fermions on a circle in the gapless regime (Luttinger liquid). Functional techniques and modular transformation properties are used to compute all correlation functions in a finite size and at finite temperature. Forward scattering disorder is treated exactly. Laughlin experiments on charge transport in a Quantum Hall Fluid on a cylinder are reviewed within this CFT framework. Edge excitations above a given bulk excitation are described by a twisted version of the Luttinger effective theory. Luttinger CFTs corresponding to the nu =1/(2p+1) filling fractions appear to be rational CFTs (RCFT). Generators of the extended symmetry algebra are identified as edge fermions creators and annihilators, thus giving a physical meaning to the RCFT point of view on edge excitations of these sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call