Abstract
Conformal techniques are reviewed with respect to applications to the initial-value problem of general relativity. Invariant transverse traceless decompositions of tensors, one of its main tools, are related to representations of the group of “conformeomorphisms” acting on the space of all Riemannian metrics onM. Conformal vector fields, a kernel in the decomposition, are analyzed on compact manifolds with constant scalar curvature. The realization of arbitrary functions as scalar curvature of conformally equivalent metrics, a generalization of Yamabe's conjecture, is applied to the Hamiltonian constraint and to the issue of positive energy of gravitational fields. Various approaches to the solution of the initial-value equations produced by altering the scaling behavior of the second fundamental form are compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.