Abstract

Some quantum critical states cannot be smoothly deformed into each other without either crossing some multicritical points or explicitly breaking certain symmetries even if they belong to the same universality class. This brings up the notion of "symmetry-enriched" quantum criticality. While recent works in the literature focused on critical states with robust degenerate edge modes, we propose that the conformal boundary condition (B.C.) is a more generic characteristic of such quantum critical states. We show that in two families of quantum spin chains, which generalize the Ising and the three-state Potts models, the quantum critical point between a symmetry-protected topological phase and a symmetry-breaking order realizes a conformal B.C. distinct from the simple Ising and Potts chains. Furthermore, we argue that the conformal B.C. can be derived from the bulk effective field theory, which realizes a novel bulk-boundary correspondence in symmetry-enriched quantum critical states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.