Abstract

Coupled longitudinal-optical (LO)-phonon-plasmon excitations were studied using confocal micro-Raman spectroscopy. The high-quality Si-doped GaN epilayers were grown in a Gunn diode structure on (0001) sapphire substrates by plasma assisted molecular beam epitaxy. Depth-profiled Raman spectra exhibit a spatial variation of both low, ω-, and high, ω+, frequency coupled phonon−plasmon modes (CPPMs) in the n-GaN layers. To describe the features of the CPPMs in the Raman spectra a self-consistent model that includes both the electro-optic and deformation-potential as well as charge-density fluctuation mechanisms as important processes for light scattering in n-GaN has been proposed. An agreement between the theoretical and experimental line shapes of the Raman spectra is obtained. From the best line-shape fitting of the CPPMs the depth profiles of the plasmon and phonon damping, plasmon frequency, free carrier concentrations, and electron mobility as well as the contributions of the electron−phonon interaction and charge density fluctuations to the Raman cross section in the GaN layers are determined. It is found that these depth profiles exhibit considerable nonuniformity and change at different laser pump-power excitations. Despite the high electron concentration in the n+-GaN layers, a strong peak of the unscreened A1(LO) phonon is also observed. A possible origin for the appearance of this mode is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.