Abstract

AbstractOhmic contacts on p-type GaN have been investigated. High quality GaN epilayers on cplane sapphire were prepared using plasma-assisted molecular beam epitaxy that utilized an inductively coupled rf nitrogen plasma source and solid source beams. The resulting film thickness and the doping concentration of the grown samples were in the range of 0.7–1.35 μm and 1018 – 1020/cm3, respectively. The metallization consisted of high work function metal bilayers which included a combinations of 25 nm-thick Ni, Ti, Pt and/or Cr and 200 nm-thick Au on the highly p-doped GaN in a transmission line model pattern. Ohmic contacts were formed by alloying the bi-layers using rapid thermal annealing (RTA) at temperatures in the range of 300–700 °C for 1 min under nitrogen ambient. Current-voltage measurements showed that the specific contact resistance was as low as 1.2 × 10 −4 Ω–cm2 for the sample having 1.4 × 1020/cm3p-type doping concentration with a Cr/Au contact annealed at 500 °C for 1 min by RTA. Judging from the scanning Auger microscopy results and the glancing angle x-ray diffraction analysis, this resistance is attributed to Cr diffusion into the GaN layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.