Abstract
Confocal Annular Josephson Tunnel Junctions (CAJTJs) which are the natural generalization of the circular annular Josephson tunnel junctions, have a rich nonlinear phenomenology due to the intrinsic non-uniformity of their planar tunnel barrier delimited by two closely spaced confocal ellipses. In the presence of a uniform magnetic field in the barrier plane, the periodically changing width of the elliptical annulus generates a asymmetric double-well for a Josephson vortex trapped in a long and narrow CAJTJ. The preparation and readout of the vortex pinned in one of the two potential minima, which are important for the possible realization of a vortex qubit, have been numerically and experimentally investigated for CAJTJs with the moderate aspect ratio 2:1. In this work we focus on the impact of the annulus eccentricity on the properties of the vortex potential profile and study the depinning mechanism of a fluxon in more eccentric samples with aspect ratio 4:1. We also discuss the effects of the temperature-dependent losses as well as the influence of the current and magnetic noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.