Abstract

While the primary properties of thermoelectric devices, directly related to the conversion efficiency, are considered in design efforts, the secondary (thermomechanical) properties are often ignored or overlooked even though they can lead to failure. Here, thermomechanical properties of thermoelectric ZrNiSn in the amorphous and crystalline state (space group F-43m), comprising thermal conductivity, thermal expansion, elastic (Young’s) modulus, and thermal shock, are studied using density functional theory and two phonon models. Thermal conductivity is also a key primary property for thermoelectric applications. Amorphous ZrNiSn exhibits a fourfold lower thermal conductivity than the crystalline counterpart due to high phonon–phonon scattering, which is conducive to thermoelectric performance. However, this is conflicting since a high thermal conductivity value is required to attain high resistance to thermal shock. Due to stronger bonds in the crystalline counterpart, facilitated by the stronger Zr3d–Ni3d and Sn5p–Ni3d hybridization and higher coordination than in the amorphous state, the linear coefficient of thermal expansion is lower, and the elastic modulus is higher. Hence, the crystalline state yields higher resistance to thermal shock. It is suggested that samples entailing both amorphous and crystalline regions can concurrently satisfy the primary and secondary requirements for enhanced efficiency and durability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call