Abstract
We analytically compute, through the six-and-a-half post-Newtonian order, the second-order-in-eccentricity piece of the Detweiler-Barack-Sago gauge-invariant redshift function for a small mass in eccentric orbit around a Schwarzschild black hole. Using the first law of mechanics for eccentric orbits [A. Le Tiec, Phys. Rev. D {\bf 92}, 084021 (2015)] we transcribe our result into a correspondingly accurate knowledge of the second radial potential of the effective-one-body formalism [A. Buonanno and T. Damour, Phys. Rev. D {\bf 59}, 084006 (1999)]. We compare our newly acquired analytical information to several different numerical self-force data and find good agreement, within estimated error bars. We also obtain, for the first time, independent analytical checks of the recently derived, comparable-mass fourth-post-Newtonian order dynamics [T. Damour, P. Jaranowski and G. Shaefer, Phys. Rev. D {\bf 89}, 064058 (2014)].
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have