Abstract
Homologous azurins from Pseudomonas fluorescens (ATCC 13525) and Pseudomonas aeruginosa (ATCC 10145) were examined by a number of electrophoretic techniques, and their copper to protein stoichiometry was determined by atomic absorption and amino acid analysis. Provided that the spectral ratio (A620/A280 or A625/A280) was 0.53 and there was no evidence of a Soret band in the absorption spectrum, then these criteria can be used to judge the homogeneity of the azurin sample. If the spectral ratio was less than 0.50, evidence suggested a nonreconstitutable, non-trypsin-digestible apoazurin was present. The fluorescence decay of these homogeneous holoazurins included three components, not two as previously reported [Szabo, A. G., et al. (1983) Biophys. J. 41, 233-244]. Whereas the decay times were nearly the same for the azurins from the different sources, the fractional fluorescence of each component varied with the azurin measured. The fluorescence of the corresponding apoazurins, prepared by a refined procedure, obeyed monoexponential decay kinetics. The temperature and pH effects on the fluorescence behavior of these homologous azurins are presented with the pH study suggesting an influence by a group which titrates between pH 5 and pH 7. When taken together these results confirm that the multiexponential decay behavior originates from conformational heterogeneity and not from contamination by an apo form.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have