Abstract

Plant exosomes are nanosized (30–150 nm) membrane vesicles that contain biomolecules and influence the development of a plant and protect the plant from pathogens. Recently, plant exosomes are in the spotlight as a new biologically active substance. However, whether plant exosomes have similar efficacy to conventional secondary metabolites of plants is unknown. In this study, the difference in efficacy between plant exosomes and conventional secondary metabolites was analyzed with three or four types of plant extracts, including ginseng (Panax ginseng) and green tea (Camellia sinensis). After 6 h of treatment, the analysis of gene expression pattern of each sample showed that the exosome treatment group and the extract treatment group were clearly distinguished. After selecting the genes that showed differential expression of > twofold change, the number of genes that were up- or downregulated appeared to be 398 or 438 for the extract and 861 or 648 for the exosome, on average. This suggests that the change in transcriptome is more expressed in the exosome treatment group than in the extract treatment group. In addition, in the comparative analysis of expression of genes that are known to affect aging, regeneration, skin barrier, and moisturization—MMP12, MMP13, NOTCH3, FGF12, HS3ST3A1, LOX, VIM, ELOVL3, and KRTI—the exosome treatment group was predicted to more effectively contribute to maintaining a healthy skin when compared to the extract treatment group. The number of genes that were identified to specifically react to the Panax ginseng or Camellia sinensis treatment group during the transcriptome change phase was 11 and 8, respectively. This suggests that exosomes bear its specific effect according to the plant it is derived from. In conclusion, the results of this study indicate that plant exosomes, as natural biologically active substances, have different effects from conventional plant extracts, and have the potential to be commercialized as a cosmeceutical product.

Highlights

  • Plants survive by defending against pathogens or adapting to the surrounding environment with various secondary metabolites, including alkaloid, flavonoid, Cho et al Applied Biological Chemistry (2022) 65:8 nutritional supply

  • The results of this study provide the evidence that plant exosomes affect human body in a different manner as compared to the extracts, and have the potential to be newly applied as a cosmeceutical product

  • Characterization of exosome The shape of exosomes separated from P. ginseng and C. sinensis was analyzed through Cryo-TEM

Read more

Summary

Introduction

Plants survive by defending against pathogens or adapting to the surrounding environment with various secondary metabolites, including alkaloid, flavonoid, Cho et al Applied Biological Chemistry (2022) 65:8 nutritional supply. Green tea has reportedly been effective in antioxidation, photoprotection, and improvement in skin-related conditions owing to the active component of flavonoids including catechin and polyphenols [6,7,8]. Mammalian exosomes contain various biomolecules, including proteins, metabolites, and nucleic acids; possess characteristics similar to that of the cells from which they are derived; and play a major role in cell metabolism, including mediating cell–cell communication, immune response, and signal delivery [11,12,13]. The facts known about plant exosomes are that they contain DNA, mRNA, miRNA, proteins, lipids and substances with protective function, and they are produced in response to various biological and non-biological environmental stresses, including pathogen infection [14,15,16]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.