Abstract

A general introduction to the topological mechanism responsible for the absolute confinement of quarks inside hadronic bound states is given, including the effects of a finite instanton angle. We then propose a calculational technique for computing these states and their properties, where instead of topology we rely on a perturbative mechanism. It assumes that already before the topological mechanism can come into effect there is already a strong inclination of quarks to be confined. In particular the planar limit of large N QCD should exhibit this mechanism. By renormalizing the infrared divergence of one-loop diagrams, one may already realize a confining potential. In practice, our procedure will require gauge-fixing in advance, but it would be more elegant if, at an intermediate level, the theory with infrared counter terms included could be written as a gauge-invariant effective model. Models of the desired kind are described. They are not renormalizable, but they are local, gauge- and lorentz invariant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.