Abstract

We study theoretically the interaction between two species of ultracold atoms confined into two layers of a finite separation, and demonstrate the existence of new types of confinement-induced interlayer bound and quasi-bound molecules: these novel exciton-like interlayer molecules appear for both positive and negative scattering lengths, and exist even for layer separations many times larger than the interspecies scattering length. The lifetime of the quasi-bound molecules grows exponentially with increasing layer separation, and they can therefore be observed in simple shaking experiments, as we demonstrate through detailed many-body calculations. These quasi-bound molecules can also give rise to novel interspecies Feshbach resonances, enabling one to control geometrically the interaction between the two species by changing the layer separation. Rather counter-intuitively, the species can be made strongly interacting, by increasing their spatial separation. The separation induced interlayer resonances provide a powerful tool for the experimental control of interspecies interactions and enables one to realize novel quantum phases of multicomponent quantum gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.