Abstract

Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer graphene, due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find that bound states gradually transform into atomic collapse states with increasing impurity charge. This is very different in zig-zag nanoribbons where multiple quasi-one-dimensional \emph{bound states} are found that originates from the zero energy zig-zag edge states. They are a consequence of the flat band and the electron distribution of these bound states exhibits two peaks. The lowest energy edge state transforms from a bound state into an atomic collapse resonance and shows a distinct relocalization from the edge to the impurity position with increasing impurity charge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.