Abstract
The bottom-up construction of low-dimensional macromolecular nanostructures directly on a surface is a promising approach for future application in molecular electronics and integrated circuit production. However, challenges still remain in controlling the formation of these nanostructures with predetermined patterns (such as linear or cyclic) or dimensions (such as the length of one-dimensional (1D) chains). Here, we demonstrate that a high degree of structural control can be achieved by employing a Cu(110)-(2×1)O nanotemplate for the confined synthesis of organometallic chains and macrocycles. This template contains ordered arrays of alternating stripes of Cu-O chains and bare Cu, the widths of which are controllable. Using scanning tunneling microscopy and low-energy electron diffraction, we show that well-defined, ordered 1D zigzag organometallic oligomeric chains with uniform lengths can be fabricated on the Cu stripes (width >5.6 nm) of the Cu(110)-(2×1)O surface. In addition, the lengths of the meta-terphenyl (MTP)-based chains can be adjusted by controlling the widths of the Cu stripes within a certain range. When reducing the widths of Cu stripes to a range of 2.6 to 5.6 nm, organometallic macrocycles including tetramer (MTP-Cu)4, hexamer (MTP-Cu)6, and octamer (MTP-Cu)8 species are formed due to the spatial confinement effect and attraction to the Cu-O chains. An overview of all formed organometallic macrocycles on the Cu stripes with different widths reveals that the origin of the formation of these macrocycles is the cis-configured organometallic dimer (MTP)2Cu3, which was observed on the extremely narrow Cu stripe with a width of 1.5 nm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have