Abstract

A facile and advanced architecture design of FeF3·0.33H2O impregnated CMK-3 nanocomposite (FeF3·0.33H2O@CMK-3) is presented. In the FeF3·0.33H2O@CMK-3 nanocomposite, mesoporous carbon CMK-3 can provide enough passageways for electron and Li(+) transport to the confined nanosized FeF3·0.33H2O. The intimate conductive contact between the FeF3·0.33H2O nanoparticles and the carbon framework not only provides an expressway of electron transfer for Li(+) insertion/extraction but also suppresses the growth and agglomeration of FeF3·0.33H2O during the crystallization process. As expected, the nanostructured materials exhibit impressive rate capability and excellent cyclicity. Remarkably, even under an ultrahigh charge/discharge rate of 50 C (the charge or discharge process takes a mere 72 s), the confined FeF3·0.33H2O@CMK-3 still shows a high specific capacity of 78 mAh g(-1). By combining confined nanosized active material, high electron conductivity, and open framework, the FeF3·0.33H2O@CMK-3 nanocomposite demonstrates excellent high-rate capability and good cycling properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.