Abstract
AbstractThe parallel 2DOF (Degrees of Freedom) mechanism presented in this paper has been the basis of much research by many authors. There are many significant results for the presented mechanism, and some of them are reported in this paper. The main goal of the research regarding the parallel mechanism is to create a hardware and software system that will be used to configure machine tools with three or more DOFs. The software system consists of two parts. One part is a set of applications intended for machine analysis and defining optimal configuration, and the other part is a control system of the machine adapted to the hardware of the machine, its configuration and purpose. For the presented mechanism, the kinematic model of the mechanism is described first. Based on the kinematic model, equations representing solutions of kinematics problems are derived. The derived equations are in a generalized form, with some variable parameters of the machine, and in such a form they correspond to every possible configuration of the reconfigurable mechanism. The equations are initially used to analyze some basic configurations, and then to analyze some configurations that have not been analyzed and presented so far. Also, equations in this form that are applicable for all possible configurations of the mechanism, are part of both parts of the software system. The final result of the presented procedures is one machine that has optimized parameters in accordance with the appropriate production process and with a configured control system that corresponds to the configuration of the machine.KeywordsParallel mechanismHybrid mechanismComplex machine toolReconfigurable machine toolInverse and direct kinematics problem
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.